Trends in Public Speaking

Speech-induced suppression during natural dialogues

  • Matin, E. Saccadic suppression: a review and an analysis. Psychol. Bull. 81, 899 (1974).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blakemore, S.-J., Wolpert, D. M. & Frith, C. D. Central cancellation of self-produced tickle sensation. Nat. Neurosci. 1, 635–640 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Thiele, A., Henning, P., Kubischik, M. & Hoffmann, K.-P. Neural mechanisms of saccadic suppression. Science 295, 2460–2462 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hughes, G., Desantis, A. & Waszak, F. Mechanisms of intentional binding and sensory attenuation: the role of temporal prediction, temporal control, identity prediction, and motor prediction. Psychol. Bull. 139, 133 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Curio, G., Neuloh, G., Numminen, J., Jousmäki, V. & Hari, R. Speaking modifies voice-evoked activity in the human auditory cortex. Hum. Brain Mapp. 9, 183–191 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Houde, J. F., Nagarajan, S. S., Sekihara, K. & Merzenich, M. M. Modulation of the auditory cortex during speech: an meg study. J. Cognit. Neurosci. 14, 1125–1138 (2002).

    Article 

    Google Scholar
     

  • Scheerer, N. E., Behich, J., Liu, H. & Jones, J. A. Erp correlates of the magnitude of pitch errors detected in the human voice. Neuroscience 240, 176–185 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Action planning and predictive coding when speaking. Neuroimage 91, 91–98 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Whitford, T. J. Speaking-induced suppression of the auditory cortex in humans and its relevance to schizophrenia. Biol. Psychiatry Cognit. Neurosci. Neuroimaging 4, 791–804 (2019).

    Article 

    Google Scholar
     

  • Creutzfeldt, O., Ojemann, G. & Lettich, E. Neuronal activity in the human lateral temporal lobe. ii. responses to the subjects own voice. Exp. Brain Res. 77, 476–489 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eliades, S. J. & Wang, X. Neural substrates of vocalization feedback monitoring in primate auditory cortex. Nature 453, 1102–1106 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ford, J. M., Roach, B. J. & Mathalon, D. H. Assessing corollary discharge in humans using noninvasive neurophysiological methods. Nat. Protocols 5, 1160–1168 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Obleser, J. & Kayser, C. Neural entrainment and attentional selection in the listening brain. Trends Cognit. Sci. 23, 913–926 (2019).

    Article 

    Google Scholar
     

  • Poeppel, D. & Assaneo, M. F. Speech rhythms and their neural foundations. Nat. Rev. Neurosci. 21, 322–334 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Carey, J. Brain facts: A primer on the brain and nervous system (ERIC, 1990).

  • Hickok, G. & Poeppel, D. Towards a functional neuroanatomy of speech perception. Trends Cognit. Sci. 4, 131–138 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Giraud, A.-L. & Poeppel, D. Cortical oscillations and speech processing: emerging computational principles and operations. Nat. Neurosci. 15, 511–517 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, Y., Buchsbaum, B. R., Grady, C. L. & Alain, C. Noise differentially impacts phoneme representations in the auditory and speech motor systems. Proc. Natl Acad. Sci. 111, 7126–7131 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Caplan, D. Why is broca’s area involved in syntax? Cortex 42, 469–471 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Grewe, T. et al. The emergence of the unmarked: A new perspective on the language-specific function of broca’s area. Hum. Brain Map. 26, 178–190 (2005).

    Article 
    ADS 

    Google Scholar
     

  • Di Liberto, G. M., O’Sullivan, J. A. & Lalor, E. C. Low-frequency cortical entrainment to speech reflects phoneme-level processing. Curr. Biol. 25, 2457–2465 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Etard, O. & Reichenbach, T. Neural speech tracking in the theta and in the delta frequency band differentially encode clarity and comprehension of speech in noise. J. Neurosci. 39, 5750–5759 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Desai, M. et al. Generalizable eeg encoding models with naturalistic audiovisual stimuli. J. Neurosci. 41, 8946–8962 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamilton, L. S. & Huth, A. G. The revolution will not be controlled: natural stimuli in speech neuroscience. Lang. Cognit. Neurosci. 35, 573–582 (2020).

    Article 

    Google Scholar
     

  • Lalor, E. C., Power, A. J., Reilly, R. B. & Foxe, J. J. Resolving precise temporal processing properties of the auditory system using continuous stimuli. J. Neurophysiol. 102, 349–359 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Lalor, E. C. & Foxe, J. J. Neural responses to uninterrupted natural speech can be extracted with precise temporal resolution. Eur. J. Neurosci. 31, 189–193 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Holdgraf, C. R. et al. Encoding and decoding models in cognitive electrophysiology. Front. Syst. Neurosci. 11, 61 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crosse, M. J., Di Liberto, G. M., Bednar, A. & Lalor, E. C. The multivariate temporal response function (mtrf) toolbox: a matlab toolbox for relating neural signals to continuous stimuli. Front. Hum. Neurosci. 10, 604 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crosse, M. J. et al. Linear modeling of neurophysiological responses to speech and other continuous stimuli: methodological considerations for applied research. Front. Neurosci. 15, 705621 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lalor, E. C., Pearlmutter, B. A., Reilly, R. B., McDarby, G. & Foxe, J. J. The vespa: a method for the rapid estimation of a visual evoked potential. Neuroimage 32, 1549–1561 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Ehinger, B. V. & Dimigen, O. Unfold: an integrated toolbox for overlap correction, non-linear modeling, and regression-based eeg analysis. PeerJ 7, e7838 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gravano, A. & Hirschberg, J. Turn-yielding cues in task-oriented dialogue. In Proceedings of the SIGDIAL 2009 Conference, 253–261 (Association for Computational Linguistics (ACL), 2009).

  • Gravano, A. & Hirschberg, J. Turn-taking cues in task-oriented dialogue. Comput. Speech Lang. 25, 601–634 (2011).

    Article 

    Google Scholar
     

  • Brusco, P., Vidal, J., Beňuš, Š. & Gravano, A. A cross-linguistic analysis of the temporal dynamics of turn-taking cues using machine learning as a descriptive tool. Speech Commun. 125, 24–40 (2020).

    Article 

    Google Scholar
     

  • Abrams, D. A., Nicol, T., Zecker, S. & Kraus, N. Right-hemisphere auditory cortex is dominant for coding syllable patterns in speech. J. Neurosci. 28, 3958–3965 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hamilton, L. S., Edwards, E. & Chang, E. F. A spatial map of onset and sustained responses to speech in the human superior temporal gyrus. Curr. Biol. 28, 1860–1871 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hamilton, L. S., Oganian, Y. & Chang, E. F. Topography of speech-related acoustic and phonological feature encoding throughout the human core and parabelt auditory cortex. BioRxiv https://www.biorxiv.org/content/10.1101/2020.06.08.121624v1 (2020).

  • Oganian, Y. & Chang, E. F. A speech envelope landmark for syllable encoding in human superior temporal gyrus. Sci. Adv. 5, eaay6279 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Phillips, D. P. & Farmer, M. E. Acquired word deafness, and the temporal grain of sound representation in the primary auditory cortex. Behav. Brain Res. 40, 85–94 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tallal, P., Miller, S. & Fitch, R. H. Neurobiological basis of speech: a case for the preeminence of temporal processing. Ann. N. Y. Acad. Sci. 682, 27–27 (1993).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Belin, P. et al. Lateralization of speech and auditory temporal processing. J. Cognit. Neurosci. 10, 536–540 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Liegeois-Chauvel, C., De Graaf, J. B., Laguitton, V. & Chauvel, P. Specialization of left auditory cortex for speech perception in man depends on temporal coding. Cereb. Cortex 9, 484–496 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zatorre, R. J. & Belin, P. Spectral and temporal processing in human auditory cortex. Cereb. Cortex 11, 946–953 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zaehle, T., Wüstenberg, T., Meyer, M. & Jäncke, L. Evidence for rapid auditory perception as the foundation of speech processing: a sparse temporal sampling fmri study. Eur. J. Neurosci. 20, 2447–2456 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zatorre, R. J., Belin, P. & Penhune, V. B. Structure and function of auditory cortex: music and speech. Trends Cognit. Sci. 6, 37–46 (2002).

    Article 

    Google Scholar
     

  • Scott, S. K., Blank, C. C., Rosen, S. & Wise, R. J. Identification of a pathway for intelligible speech in the left temporal lobe. Brain 123, 2400–2406 (2000).

    Article 
    PubMed 

    Google Scholar
     

  • Liebenthal, E., Binder, J. R., Spitzer, S. M., Possing, E. T. & Medler, D. A. Neural substrates of phonemic perception. Cereb. Cortex 15, 1621–1631 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Rodd, J. M., Davis, M. H. & Johnsrude, I. S. The neural mechanisms of speech comprehension: fmri studies of semantic ambiguity. Cereb. Cortex 15, 1261–1269 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Wagner, A. D., Paré-Blagoev, E. J., Clark, J. & Poldrack, R. A. Recovering meaning: left prefrontal cortex guides controlled semantic retrieval. Neuron 31, 329–338 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bruneau, N. & Gomot, M. Auditory evoked potentials (n1 wave) as indices of cortical development. In Neuroimaging in child neuropsychiatric disorders, 113–123 (Springer, 1998).

  • Lightfoot, G. Summary of the n1-p2 cortical auditory evoked potential to estimate the auditory threshold in adults. In Seminars in hearing, vol. 37, 001–008 (Thieme Medical Publishers, 2016).

  • Cole, J. Prosody in context: A review. Lang. Cognit. Neurosci. 30, 1–31 (2015).

    Article 

    Google Scholar
     

  • Cole, J. et al. Sound, structure and meaning: The bases of prominence ratings in english, french and spanish. J. Phonetics 75, 113–147 (2019).

    Article 

    Google Scholar
     

  • Garofolo, J. S. et al. Timit acoustic-phonetic continuous speech corpus. Tech. Rep., (Massachusetts Institute of Technology (MIT), SRI International (SRI) and Texas Instruments, Inc. (TI), 1993). https://catalog.ldc.upenn.edu/LDC93s1.

  • Schoppe, O., Harper, N. S., Willmore, B. D., King, A. J. & Schnupp, J. W. Measuring the performance of neural models. Front. Comput. Neurosci. 10, 10 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hsu, A., Borst, A. & Theunissen, F. E. Quantifying variability in neural responses and its application for the validation of model predictions. Netw. Comput. Neural Syst. 15, 91–109 (2004).

    Article 

    Google Scholar
     

  • Pérez, A. et al. Timing of brain entrainment to the speech envelope during speaking, listening and self-listening. Cognition 224, 105051 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lakatos, P., Gross, J. & Thut, G. A new unifying account of the roles of neuronal entrainment. Curr. Biol. 29, R890–R905 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ding, N., Melloni, L., Zhang, H., Tian, X. & Poeppel, D. Cortical tracking of hierarchical linguistic structures in connected speech. Nat. Neurosci. 19, 158–164 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pellegrino, F., Coupé, C. & Marsico, E. A cross-language perspective on speech information rate. Language 87, 539–558 (2011).

  • Chen, C.-M. A. et al. The corollary discharge in humans is related to synchronous neural oscillations. J. Cognit. Neurosci. 23, 2892–2904 (2011).

    Article 

    Google Scholar
     

  • Zheng, Z. Z., Munhall, K. G. & Johnsrude, I. S. Functional overlap between regions involved in speech perception and in monitoring one’s own voice during speech production. J. Cognit. Neurosci. 22, 1770 (2010).

    Article 

    Google Scholar
     

  • O’sullivan, J. A. et al. Attentional selection in a cocktail party environment can be decoded from single-trial eeg. Cerebral Cortex 25, 1697–1706 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Power, A. J., Foxe, J. J., Forde, E.-J., Reilly, R. B. & Lalor, E. C. At what time is the cocktail party? a late locus of selective attention to natural speech. Eur. J. Neurosci. 35, 1497–1503 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Bigdely-Shamlo, N., Kreutz-Delgado, K., Kothe, C. & Makeig, S. Eyecatch: Data-mining over half a million eeg independent components to construct a fully-automated eye-component detector. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 5845–5848 (IEEE, 2013).

  • Mognon, A., Jovicich, J., Bruzzone, L. & Buiatti, M. Adjust: An automatic eeg artifact detector based on the joint use of spatial and temporal features. Psychophysiology 48, 229–240 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Tran, Y., Craig, A., Boord, P. & Craig, D. Using independent component analysis to remove artifact from electroencephalographic measured during stuttered speech. Med. Biol. Eng. Comput. 42, 627–633 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Muthukumaraswamy, S. D. High-frequency brain activity and muscle artifacts in meg/eeg: a review and recommendations. Front. Hum. Neurosci. 7, 138 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Janssen, N., Meij, Mvd, López-Pérez, P. J. & Barber, H. A. Exploring the temporal dynamics of speech production with eeg and group ica. Sci. Rep. 10, 3667 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delorme, A. & Makeig, S. Eeglab, https://eeglab.org/tutorials/06_RejectArtifacts/RunICA.html (2004).

  • Porcaro, C., Medaglia, M. T. & Krott, A. Removing speech artifacts from electroencephalographic recordings during overt picture naming. NeuroImage 105, 171–180 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Chartier, J., Anumanchipalli, G. K., Johnson, K. & Chang, E. F. Encoding of articulatory kinematic trajectories in human speech sensorimotor cortex. Neuron 98, 1042–1054 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gravano, A., Kamienkowski, J. E. & Brusco, P. Uba games corpus. Tech. Rep., Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), http://hdl.handle.net/11336/191235 (2023).

  • Delorme, A. & Makeig, S. Eeglab: an open source toolbox for analysis of single-trial eeg dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Widmann, A. & Schröger, E. Filter effects and filter artifacts in the analysis of electrophysiological data. Front. Psychol. 3, 233 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delorme, A. & Makeig, S. Eeglab, https://eeglab.org/others/Firfilt_FAQ.html (2004).

  • Lee, T.-W. Independent Component Analysis: Theory and Applications (Springer-Science+Business Media, B.V., 1998).

  • Gramfort, A. et al. MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7, 1–13 (2013).

    Article 

    Google Scholar
     

  • Virtanen, P. et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods 17, 261–272 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McFee, B. et al. librosa: Audio and music signal analysis in python. In Proceedings of the 14th python in science conference, vol. 8, 18–25 (Citeseer, 2015).

  • Slaney, M. Auditory toolbox. Interval Res. Corp. Tech. Rep. 10, 1194 (1998).


    Google Scholar
     

  • Mesgarani, N., Cheung, C., Johnson, K. & Chang, E. F. Phonetic feature encoding in human superior temporal gyrus. Science 343, 1006–1010 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marozzi, M. Some remarks about the number of permutations one should consider to perform a permutation test. Statistica 64, 193–201 (2004).

    MathSciNet 

    Google Scholar
     

  • Charlier, F. et al. Statannotations. Zenodo https://doi.org/10.5281/zenodo.7213391 (2022).

  • Mensen, A. & Khatami, R. Advanced eeg analysis using threshold-free cluster-enhancement and non-parametric statistics. Neuroimage 67, 111–118 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    Article 
    MathSciNet 

    Google Scholar
     

  • Hoijtink, H., Mulder, J., van Lissa, C. & Gu, X. A tutorial on testing hypotheses using the bayes factor. Psychol. Methods 24, 539 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Lachaux, J.-P., Rodriguez, E., Martinerie, J. & Varela, F. J. Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8, 194–208 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     


  • Source link

    Related Articles

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Back to top button