Microsoft’s new AI can simulate anyone’s voice with 3 seconds of audio

On the VALL-E example website, Microsoft provides dozens of audio examples of the AI model in action. Among the samples, the “Speaker Prompt” is the three-second audio provided to VALL-E that it must imitate. The “Ground Truth” is a pre-existing recording of that same speaker saying a particular phrase for comparison purposes (sort of like the “control” in the experiment). The “Baseline” is an example of synthesis provided by a conventional text-to-speech synthesis method, and the “VALL-E” sample is the output from the VALL-E model.
A block diagram of VALL-E provided by Microsoft researchers.
Credit:
Microsoft
While using VALL-E to generate those results, the researchers only fed the three-second “Speaker Prompt” sample and a text string (what they wanted the voice to say) into VALL-E. So compare the “Ground Truth” sample to the “VALL-E” sample. In some cases, the two samples are very close. Some VALL-E results seem computer-generated, but others could potentially be mistaken for a human’s speech, which is the goal of the model.
In addition to preserving a speaker’s vocal timbre and emotional tone, VALL-E can also imitate the “acoustic environment” of the sample audio. For example, if the sample came from a telephone call, the audio output will simulate the acoustic and frequency properties of a telephone call in its synthesized output (that’s a fancy way of saying it will sound like a telephone call, too). And Microsoft’s samples (in the “Synthesis of Diversity” section) demonstrate that VALL-E can generate variations in voice tone by changing the random seed used in the generation process.
Perhaps owing to VALL-E’s ability to potentially fuel mischief and deception, Microsoft has not provided VALL-E code for others to experiment with, so we could not test VALL-E’s capabilities. The researchers seem aware of the potential social harm that this technology could bring. For the paper’s conclusion, they write:
“Since VALL-E could synthesize speech that maintains speaker identity, it may carry potential risks in misuse of the model, such as spoofing voice identification or impersonating a specific speaker. To mitigate such risks, it is possible to build a detection model to discriminate whether an audio clip was synthesized by VALL-E. We will also put Microsoft AI Principles into practice when further developing the models.”
Source link